Localized FCM Clustering with Spatial Information for Medical Image Segmentation and Bias Field Estimation
نویسندگان
چکیده
This paper presents a novel fuzzy energy minimization method for simultaneous segmentation and bias field estimation of medical images. We first define an objective function based on a localized fuzzy c-means (FCM) clustering for the image intensities in a neighborhood around each point. Then, this objective function is integrated with respect to the neighborhood center over the entire image domain to formulate a global fuzzy energy, which depends on membership functions, a bias field that accounts for the intensity inhomogeneity, and the constants that approximate the true intensities of the corresponding tissues. Therefore, segmentation and bias field estimation are simultaneously achieved by minimizing the global fuzzy energy. Besides, to reduce the impact of noise, the proposed algorithm incorporates spatial information into the membership function using the spatial function which is the summation of the membership functions in the neighborhood of each pixel under consideration. Experimental results on synthetic and real images are given to demonstrate the desirable performance of the proposed algorithm.
منابع مشابه
Cluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملUnsupervised MRI segmentation with spatial connectivity
Magnetic Resonance Imaging (MRI) offers a wealth of information for medical examination. Fast, accurate and reproducible segmentation of MRI is desirable in many applications. We have developed a new unsupervised MRI segmentation method based on k-means and fuzzy c-means (FCM) algorithms, which uses spatial constraints. Spatial constraints are included by the use of a Markov Random Field model....
متن کاملMRI Brain Images Segmentation
In this paper, a modified fuzzy c-means (FCM) clustering for medical image segmentation is presented. A conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership function in the neighborh...
متن کاملImage Segmentation by a Genetic Fuzzy c-Means Algorithm Using Color and Spatial Information
This paper describes a new clustering algorithm for color image segmentation. We combine the classical fuzzy c-means algorithm (FCM) with a genetic algorithm (GA), and we modify the objective function of the FCM for taking into account the spatial information of image data and the intensity inhomogeneities. An application to medical images is presented. Experiments show that the proposed algori...
متن کاملA Robust Fuzzy Clustering Technique with Spatial Neighborhood Information for Effective Medical Image Segmentation
Medical image segmentation demands an efficient and robust segmentation algorithm against noise. The conventional fuzzy c-means algorithm is an efficient clustering algorithm that is used in medical image segmentation. But FCM is highly vulnerable to noise since it uses only intensity values for clustering the images. This paper aims to develop a novel and efficient fuzzy spatial c-means cluste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013